Protection from rapamycin-induced apoptosis by insulin-like growth factor-I is partially dependent on protein kinase C signaling.
نویسندگان
چکیده
Rapamycin-induced apoptosis in sarcoma cells is inhibited by insulin-like growth factor-I (IGF-I) through a signaling pathway independent of Ras-extracellular signal-regulated kinase 1/2 and Akt. IGF-I induces Bad phosphorylation (Ser112, Ser136, and Ser155) in a pathway involving phosphoinositide 3' kinase (PI3K) and protein kinase C (PKC; mu, epsilon, or theta) resulting in sequestering Bad from mitochondria and subsequently interacting with 14-3-3gamma in the cytosol. Gene knockdown of Bad, Bid, Akt1, Akt2, PKC-mu, PKC-epsilon, or PKC-theta was achieved by transient transfection using small interfering RNAs. Results indicate that IGF-I signaling to Bad requires activation of PI3K and PKC (mu, theta, epsilon) but not mTOR, Ras-extracellular signal-regulated kinase 1/2, protein kinase A, or p90(RSK). Wortmannin blocked the phosphorylation of PKC-mu (Ser744/Ser748), suggesting that PI3K is required for the activation of PKCs. PKCs phosphorylate Bad under in vitro conditions, and the association of phosphorylated Bad with PKC-mu or PKC-epsilon, as shown by immunoprecipitation, indicated direct involvement of PKCs in Bad phosphorylation. To confirm these results, cells overexpressing pEGFP-N1, wt-Bad, or Bad with a single site mutated (Ser112Ala; Ser136Ala; Ser155Ala), two sites mutated (Ser(112/136)Ala; Ser(112/155)Ala; Ser(136/155)Ala), or the triple mutant were tested. IGF-I protected completely against rapamycin-induced apoptosis in cells overexpressing wt-Bad and mutants having either one or two sites of phosphorylation mutated. Knockdown of Bid using small interfering RNA showed that Bid is not required for rapamycin-induced cell death. Collectively, these data suggest that IGF-I-induced phosphorylation of Bad at multiple sites via a pathway involving PI3K and PKCs is important for protecting sarcoma cells from rapamycin-induced apoptosis.
منابع مشابه
Insulin-like growth factor I-mediated protection from rapamycin-induced apoptosis is independent of Ras-Erk1-Erk2 and phosphatidylinositol 3'-kinase-Akt signaling pathways.
The mTOR inhibitor rapamycin induces G1 cell cycle accumulation and p53-independent apoptosis of the human rhabdomyosarcoma cell line Rh1. Insulin-like growth factor I (IGF-I) and insulin, but not epidermal growth factor or platelet-derived growth factor, completely prevented apoptosis of this cell line. Because the Ras-Erk1-Erk2 and phosphatidylinositol 3'-kinase (PI3K)-Akt pathways are implic...
متن کاملThe Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction
Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...
متن کاملMammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade.
Mammalian target of rapamycin (mTOR) inhibitors, such as rapamycin and CCI-779, have shown preclinical potential as therapy for multiple myeloma. By inhibiting expression of cell cycle proteins, these agents induce G1 arrest. However, by also inhibiting an mTOR-dependent serine phosphorylation of insulin receptor substrate-1 (IRS-1), they may enhance insulin-like growth factor-I (IGF-I) signali...
متن کاملOridonin induces human melanoma A375-S2 cell death partially through inhibiting insulin-like growth factor 1 receptor signaling.
Our previous studies indicated that oridonin, a diterpenoid isolated from Rabdosia rubescens, induced human melanoma A375-S2 cell apoptosis. In this study, we investigated whether the proapoptotic effect of oridonin on A375-S2 cells would depend on an interference with function of the insulin-like growth factor 1 (IGF-1) receptor, a plasma membrane receptor critical for the survival or antiapop...
متن کاملInsulin-like growth factor 1 inhibits autophagy of human colorectal carcinoma drug-resistant cells via the protein kinase B/mammalian target of rapamycin signaling pathway
Insulin-like growth factor 1 (IGF-1) is reported to inhibit autophagy of human colorectal carcinoma cells (HCT); however, little is known regarding the mechanisms underlying the inhibitory effect of IGF-1 on autophagy in HCT resistant strains. The present study aimed to analyze the inhibitory effect of IGF-1 on the autophagy of HCT resistant strains and its potential underlying mechanisms. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 70 5 شماره
صفحات -
تاریخ انتشار 2010